Измерительные трансформаторы

6 февраля 2013 -

Измерительные трансформаторы используют главным образом для подключения электроизмерительных приборов в цепи переменного тока высокого напряжения. При этом электроизмерительные приборы оказываются изолированными от цепей высокого напряжения, что обеспечивает безопасность работы обслуживающего персонала. Кроме того, измерительные трансформаторы дают возможность расширять пределы измерения приборов, т. е. измерять большие токи и напряжения с помощью сравнительно несложных приборов, рассчитанных для измерения малых токов и. напряжений. В ряде случаев измерительные трансформаторы служат для подключения к цепям высокого напряжения обмоток реле, обеспечивающих защиту электрических установок от аварийных режимов.Измерительные трансформаторы подразделяют на два типа — трансформаторы напряжения и трансформаторы тока.

 

Первые служат для включения вольтметров, а также других приборов, реагирующих на значение напряжения (например, катушек напряжения ваттметров, счетчиков, фазометров и различных реле). Вторые служат для включения амперметров и токовых катушек указанных приборов. Измерительные трансформаторы изготовляют мощностью от пяти до нескольких сотен вольтампер; они рассчитаны для совместной работы со стандартными приборами (амперметрами на 1; 2; 2,5 и 5 А, вольтметрами на 100 В).

Измерительные трансформаторы напряжения


Рис.1. Схема включения и векторная диаграмма измерительного трансформатора   напряжения:  1 — первичная обмотка; 2 —вторичная обмотка
 
    Его выполняют в виде двухобмоточного понижающего трансформатора (рис. 1, а). Для обеспечения безопасности работы обслуживающего персонала вторичную обмотку тщательно изолируют от первичной и заземляют.    Условное обозначение трансформатора напряжения такое же, как двухобмоточного трансформатора.
       Так как сопротивления обмоток вольтметров и других приборов, подключаемых к трансформатору напряжения, велики, то он практически работает в режиме холостого хода.
       В действительности ток холостого хода I0 (а также небольшой ток нагрузки) создает в трансформаторе падение напряжения, поэтому, как видно из векторной диаграммы (рис.1,6),U'2 ≠ U1 и между векторами этих напряжений имеется некоторый сдвиг по фазе δu. В результате этого при измерениях образуются некоторые погрешности.
       В измерительных трансформаторах напряжения различают два вида погрешностей:
а) относительная погрешность напряжения
б) угловая погрешность δu; за ее значение принимают угол между векторами Ú1 и — Ú'2. Она влияет на результаты измерений, выполненных с помощью ваттметров, счетчиков, фазометров и прочих приборов, показания которых зависят не только от силы тока и напряжения, но и от угла сдвига фаз между ними. Угловая погрешность считается положительной, если вектор Ú'2опережает вектор Ú1.
          В зависимости от величины допускаемых погрешностей стационарные трансформаторы напряжения подразделяют на три класса точности: 0,5; 1 и 3; а лабораторные — на четыре класса: 0,05; 0,1; 0,2 и 0,5. Обозначение класса соответствует величине относительной погрешности γuпри номинальном напряжении Ulном.
         Выпускаемые промышленностью трансформаторы напряжения сохраняют класс точности при изменении первичного напряжения от 80 до 120% номинального.
         Для уменьшения погрешностей γu и δu сопротивления обмоток трансформатора Z1 и Z2 делают по возможности малыми, а магнитопровод выполняют из высококачественной стали достаточно большого поперечного сечения, чтобы в рабочем режиме он не был насыщен. Благодаря этому обеспечивается значительное уменьшение тока холостого хода.

Измерительные трансформаторы тока

 

 

 

Рис. 2. Схема включения трансформатора тока (а), общий вид проходного трансформатора (б) и векторная диаграмма (в):1 – медный стержень (первичная  обмотка); 2 — вторичная  обмотка;  3 -изолятор; 4 –магнитопровод.

Его выполняют в виде двухобмоточного повышающего трансформатора (рис. 2 а) или в виде проходного трансформатора, у которого первичной обмоткой служит провод, проходящий через окно магнитопровода. В некоторых конструкциях магнитопровод и вторичная обмотка смонтированы на проходном изоляторе, служащем для ввода высокого напряжения в силовой трансформатор или другую электрическую установку. Первичной обмоткой трансформатора служит медный стержень, проходящий внутри изолятора (рис. 2 б).
 Сопротивления обмоток амперметров и других приборов, подключаемых к трансформатору тока, обычно малы. Поэтому он практически работает в режиме короткого замыкания, при котором токи I1 и I'2 во много раз больше тока I0, и с достаточной степенью точности можно считать, что

I1 = I'2 = I2/k.  
                  
  В действительности из-за наличия холостого хода I0 ≈ Iμ в рассматриваемом трансформаторе I1≠ I2 и между векторами этих токов имеется некоторый угол, отличный от 180° (рис, 2  в). Это создает относительную токовую погрешность
γi = [(I2k -I1)/I1] 100%

и угловую погрешность, измеряемую углом δi между векторами I1 и — I'2. Погрешность δi — считается положительной, если вектор — I'2 опережает вектор I1.
В зависимости от значения допускаемых погрешностей трансформаторы тока подразделяют на пять классов точности: стационарные — на классы 0,2; 0,5; 1; 3 и 10; лабораторные — на классы 0,01; 0,02; 0,05; 0,1; 0,2. Приведенные цифры соответствуют допускаемой для данного класса токовой погрешности при номинальном значении тока.

Заключение


Трансформатор напряжения — трансформатор, питающийся от источника напряжения. Типичное применение — преобразование и гальваническая развязка высокого напряжения в низкое в измерительных цепях. Применение трансформатора напряжения позволяет изолировать логические цепи защиты и цепи измерения от цепи высокого напряжения.
Трансформатор тока — трансформатор, питающийся от источника тока. Типичное применение — для снижения первичного тока до величины, используемой в цепях измерения, защиты, управления и сигнализации, кроме того, трансформатор тока осуществляет гальваническую развязку ( отличие от шунтовых схем измерения тока). Номинальное значение тока вторичной обмотки 1А, 5А. Первичная обмотка трансформатора тока включается в цепь с измеряемым переменным током, а во вторичную включаются измерительные приборы. Ток, протекающий по вторичной обмотке трансформатора тока, равен току первичной обмотки, деленному на коэффициент трансформации. ВНИМАНИЕ! Вторичная обмотка токового трансформатора должна быть надёжно замкнута на низкоомную нагрузку измерительного прибора или накоротко. При случайном или умышленном разрыве цепи возникает скачок напряжения, опасный для изоляции, окружающих электроприборов и жизни техперсонала! Поэтому по правилам технической эксплуатации необходимо неиспользуемые вторичные обмотки закорачивать, а все вторичные обмотки трансформаторов тока подлежат заземлению.

Список используемой литературы

  • Акимов Е. Г. Измерительные трансформаторы напряжения и комплекты трансформаторов постоянного тока
  • Трансформаторы силовые и измерительные. Справочник. Том 1 / Под ред. Акимова Е.Г. — 2009
  • Трансформаторы тока / В.В. Афанасьев, Н.М. Адоньев, Л.В. Жалалис и др. – Л.: Энергия, 2012
  • Справочник по электроизмерительным приборам; Под ред. К. К. Илюнина — Л.: Энергоатомиздат, 2009
  • http://www.induction.ru/library/book_001/glava2/2-22.html
Комментарии (0)

Нет комментариев. Ваш будет первым!